TuffCut®

End Mill Icon Glossary

Number of Flutes Workpiece **Z**3 Material Group

Center Cutting

Steels P

K

Lengths

Stainless Steels M

Cast Iron

Coatings

ALtima® Xtreme	ALtima®	TiAIN
TiCN	TiN	Fordlube

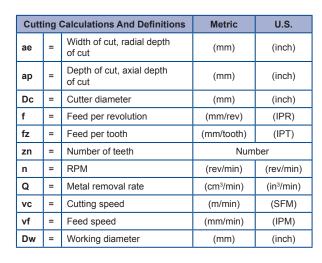
Special Alloys S

Non-Ferrous Ν

Maximum

Coolant

Minimal


Coolant

Coolant

Max.

Coolant

MMS

CERAedge⁶

Helix Angle

Ball Nose

Neck Relief

N

Corner Radius

Shank

Shank/DIN

Chipbreaker

Formulas

RPM (n) = SFM (vc) \times 3.82/Tool Diam. $IPM(vf) = RPM(n) \times IPR(f)$

Conversion Inch to Metric

SFM (vc) to m/min (vc) = SFM (vc) x .3048 IPM (vf) to mm/min (vf) = IPM (vf) x 25.4

RPM (n) = $m/min (vc) \times 318.057/Tool Diam$. mm/min (vf) = RPM (n) x mm/Revolution (f).

Conversion Metric to Inch

m/min (vc) to SFM (vc) = (m/min)/.3048mm/min (vf) to IPM (vf) = (mm/min)/25.4

Safety Note

Always wear the appropriate personal protective equipment such as safety glasses and protective clothing when using solid carbide or HSS cutting tools. Machines should be fully guarded. Technical data provided should be considered advisory only as variations may be necessary depending on the particular application.

End Mill Troubleshooting

PROBLEM	POSSIBLE CAUSE	POSSIBLE SOLUTION
Excessive Flank Wear	Speed too high	Reduce the cutting speed RPM's (n).
	Improper feed speed (too slow)	Increase feed per tooth (fz).
	Hard workpiece material > 55 Rc	Try 90-100 SFM (vc) with multi-fluted tool (5 flutes+). Use ALtima® 52 hard coating.
	Recutting Chips	Change feed speed to change chip size or clear chips with coolant or air pressure.
	Milling Strategy	Ensure you are climb milling unless workpiece material has hard/abrasive outer skin or high impact tool steel like D2, then conventional milling technique is preferred for breakthrough (see pg 314).
	Improper cutting angle	Change to correct cutting angle, tilt tool at 15 degrees.
	Too low a primary relief angle	Change to larger relief angle.
PROBLEM	POSSIBLE CAUSE	POSSIBLE SOLUTION
	No Corner Radius	Implementing corner radius on tool adds strength and increases tool life.
	Speed too high	Reduce the cutting speed RPM's (n).
Excessive Corner Wear	Tool Runout	Check tool runout in holder/spindle, <.0003" (.0076mm) desired. Hand ground flats can be suspect and common cause. Use collet, milling chuck, or shrink fit holders if possible.
	Tool Overhang	Ensure you are using shortest OAL possible, stub tool in holder. Utilize stronger necked tool for longer reaches.
PROBLEM	POSSIBLE CAUSE	POSSIBLE SOLUTION
	Lack of rigidity (tool)	Use shortest end mill available, hold shank deeper in holder, investigate for tool slippage. Use short gage length holder.
	Lack of rigidity (tool) Lack of rigidity (workpiece)	in holder, investigate for tool slippage. Use short
		in holder, investigate for tool slippage. Use short gage length holder.
	Lack of rigidity (workpiece)	in holder, investigate for tool slippage. Use short gage length holder. Tighten workpiece fixture - a common problem.
	Lack of rigidity (workpiece) Feed too high	in holder, investigate for tool slippage. Use short gage length holder. Tighten workpiece fixture - a common problem. Decrease feed per tooth (fz) Decrease feed per tooth (fz) on first pass through workpiece skin or reduce radial width of cut (ae)
Cutting Edge Chipping	Lack of rigidity (workpiece) Feed too high Feed to high on first pass	in holder, investigate for tool slippage. Use short gage length holder. Tighten workpiece fixture - a common problem. Decrease feed per tooth (fz) Decrease feed per tooth (fz) on first pass through workpiece skin or reduce radial width of cut (ae) first pass. Reduce FPT on entry - implement radius in or sweeping entrances - avoid 90° (perpendicular) entry. Ensure you are climb milling unless workpiece material has hard/abrasive outer skin or high impact tool steel like D2, then conventional milling
Cutting Edge Chipping	Lack of rigidity (workpiece) Feed too high Feed to high on first pass Part Entry	in holder, investigate for tool slippage. Use short gage length holder. Tighten workpiece fixture - a common problem. Decrease feed per tooth (fz) Decrease feed per tooth (fz) on first pass through workpiece skin or reduce radial width of cut (ae) first pass. Reduce FPT on entry - implement radius in or sweeping entrances - avoid 90° (perpendicular) entry. Ensure you are climb milling unless workpiece material has hard/abrasive outer skin or high impact tool steel like D2, then conventional milling
Cutting Edge Chipping	Lack of rigidity (workpiece) Feed too high Feed to high on first pass Part Entry Milling Strategy	in holder, investigate for tool slippage. Use short gage length holder. Tighten workpiece fixture - a common problem. Decrease feed per tooth (fz) Decrease feed per tooth (fz) on first pass through workpiece skin or reduce radial width of cut (ae) first pass. Reduce FPT on entry - implement radius in or sweeping entrances - avoid 90° (perpendicular) entry. Ensure you are climb milling unless workpiece material has hard/abrasive outer skin or high impact tool steel like D2, then conventional milling technique is preferred for breakthrough (see pg 314). Ensure you are using shortest OAL possible, stub tool in holder. Utilize stronger necked tool
Cutting Edge Chipping	Lack of rigidity (workpiece) Feed too high Feed to high on first pass Part Entry Milling Strategy Tool Overhang	in holder, investigate for tool slippage. Use short gage length holder. Tighten workpiece fixture - a common problem. Decrease feed per tooth (fz) Decrease feed per tooth (fz) on first pass through workpiece skin or reduce radial width of cut (ae) first pass. Reduce FPT on entry - implement radius in or sweeping entrances - avoid 90° (perpendicular) entry. Ensure you are climb milling unless workpiece material has hard/abrasive outer skin or high impact tool steel like D2, then conventional milling technique is preferred for breakthrough (see pg 314). Ensure you are using shortest OAL possible, stub tool in holder. Utilize stronger necked tool for longer reaches. Check tool runout in holder/spindle, <.0003" (.0076mm) desired. Hand ground flats can be suspect and common cause. Use collet, milling
Cutting Edge Chipping	Lack of rigidity (workpiece) Feed too high Feed to high on first pass Part Entry Milling Strategy Tool Overhang Tool Runout Not enough rigidity of machine tool	in holder, investigate for tool slippage. Use short gage length holder. Tighten workpiece fixture - a common problem. Decrease feed per tooth (fz) Decrease feed per tooth (fz) on first pass through workpiece skin or reduce radial width of cut (ae) first pass. Reduce FPT on entry - implement radius in or sweeping entrances - avoid 90° (perpendicular) entry. Ensure you are climb milling unless workpiece material has hard/abrasive outer skin or high impact tool steel like D2, then conventional milling technique is preferred for breakthrough (see pg 314). Ensure you are using shortest OAL possible, stub tool in holder. Utilize stronger necked tool for longer reaches. Check tool runout in holder/spindle, < .0003" (.0076mm) desired. Hand ground flats can be suspect and common cause. Use collet, milling chuck, or shrink fit holders if possible.

End Mill Troubleshooting Continued

PROBLEM	POSSIBLE CAUSE	POSSIBLE SOLUTION
	Lack of rigidity (workpiece)	Tighten workpiece fixture - a common problem.
	Speed too low	Increase the cutting speed RPM's (n).
	Feed too high	Decrease feed per tooth (fz).
	Heavy depth of cut	Reduce width of cut, radial depth of cut (ae) & depth of cut, axial depth of cut (ap).
	Part Entry	Reduce FPT on entry - implement radius in or sweeping entrances - avoid 90° (perpendicular) entry.
Breakage	Milling Strategy	Review tool path and ensure there are no arbitrary moves, extreme arc of engagement increases & undesirable situations for the tool. Keep constant radial engagement. See tool path diagrams on page 317.
	Tool Overhang	Ensure you are using shortest OAL possible, stub tool in holder. Utilize stronger necked tool for longer reaches.
	Tool Runout	Check tool runout in holder/spindle, <.0003" (.0076mm) desired. Hand ground flats can be suspect and common cause. Use collet, milling chuck, or shrink fit holders if possible.
	Excessive edge wear	Recondition at earlier stage. Factory recondition service is recommended. See M.A. Ford's® RED BOX reconditioning program on page 471.
PROBLEM	POSSIBLE CAUSE	POSSIBLE SOLUTION
	Chip Welding to cutting edge	Utilize proper tool coating for workpiece material being cut. Climb mill preferred.
Built Un Edge (BUE)	Feed too low	Increase feed per tooth (fz).
Built Up Edge (BUE)	Speed too low	Increase the cutting speed RPM's (n).
	Coolant Strategy	Add coolant or readjust coolant flow, use through tool coolant if available. Check coolant mixture concentration.
PROBLEM	POSSIBLE CAUSE	POSSIBLE SOLUTION
	Insufficient chip room	Use end mill with fewer flutes.
	Feed too high	Decrease feed per tooth (fz).
Chip Packing	Heavy depth of cut	Reduce width of cut, radial depth of cut (ae) & depth of cut, axial depth of cut (ap).
	Not enough coolant	Apply more coolant to flush chips. Use air pressure or op. stop to clear chips away.
	Large heavy chip	Utilize chipbreaker style tool to cut chip size.
PROBLEM	POSSIBLE CAUSE	POSSIBLE SOLUTION
	Feed too high	Decrease feed per tooth (fz).
	Speed too low	Increase the cutting speed RPM's (n).
Poor Surface Finish	Too light width of cut	Increase width of cut, radial depth of cut (ae) to stabilize tool in cut.
	Tool Runout	Check tool runout in holder/spindle, <.0003" (.0076mm) desired. Hand ground flats can be suspect and common cause. Use collet, milling chuck, or shrink fit holders if possible.
	Built up Edge	Use Flood Coolant.
	Recutting Chips	Redirect/Evaluate coolant flush - or use fewer number of flutes.
	No end tooth concavity	Add margin (touch primary with oilstone).

End Mill Troubleshooting Continued

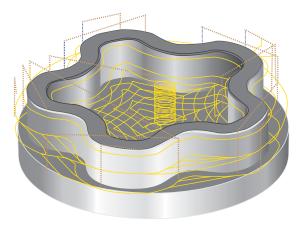
PROBLEM	POSSIBLE CAUSE	POSSIBLE SOLUTION
	Lack of rigidity (workpiece)	Tighten workpiece fixture - a common problem.
	Lack of rigidity (machine & holder)	Use better machine tool, holder or change condition. Ask your M.A. Ford® representative about BlueSwarf harmonic testing.
	Tool Runout	Check tool runout in holder/spindle, <.0003" (.0076mm) desired. Hand ground flats can be suspect and common cause. Use collet, milling chuck, or shrink fit holders if possible.
	Speed too high	Reduce the cutting speed RPM's (n).
Chatter/Vibration	Feed too low	Increase feed per tooth (fz).
	Chip too thin	Utilize chip thinning adjustment multiplier.
	Arc of engagement violation	Use smaller tools and generate corner radii in pockets. Avoid tools that diameter matches workpiece corner radius, or rough plunge corners.
	Milling Strategy	Ensure you are climb milling unless workpiece material has hard/abrasive outer skin or high impact tool steel like D2 then conventional milling technique is preferred for breakthrough.
PROBLEM	POSSIBLE CAUSE	POSSIBLE SOLUTION
Tool Deflection	Tool Overhang	Ensure you are using shortest OAL possible, stub tool in holder. Utilize stronger necked tool for longer reaches.
	End mill Diameter	Increase diameter of end mill for higher strength to length ratio.
	Increase number of flutes	Higher number of flutes = larger core diameter = increased strength.
	Feed too high	Decrease feed per tooth (fz).
	Too high width of cut	Decrease width of cut, radial depth of cut (ae).
	Milling Strategy	Climb milling can help reduce the amount of deflection in some cases.
PROBLEM	POSSIBLE CAUSE	POSSIBLE SOLUTION
	Coolant Strategy	Add coolant or readjust coolant flow, use through tool coolant if available. Check coolant mixture concentration.
	Tool Deflection	See Tool Deflection above.
No Dimensional Accuracy	Feed too high	Decrease feed per tooth (fz).
(Wall Tapered)	Too high width of cut	Decrease width of cut, radial depth of cut (ae).
	Tool Runout	Check tool runout in holder/spindle, <.0003" (.0076mm) desired. Hand ground flats can be suspect and common cause. Use collet, milling chuck, or shrink fit holders if possible.

Milling Strategy Comparison

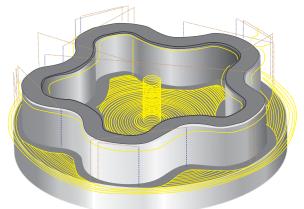
Conventional Machining

- Reduced Axial Depths Of Cut

 (ap) Normally 1 x Tool Diameter
- Higher Radial Depths Of Cut (ae)
 Normally 0.5 x Tool Diameter
- Lower Spindle Speed RPM (n)
- Lower Feed Rate (vf) (inch/min or mm/min)
- Slower Machining Time
- Low Metal Removal Rate (Q - in³/min or cm³/min)


High Speed Machining (HSM)

- Increased Axial Depths Of Cut (ap) - up to 2 x Tool Diameter
- Reduced Radial Depths Of Cut (ae) - 0.1/0.2 x Tool Diameter
- Higher Spindle Speed RPM (n)
- Higher Feed Rate (vf) (inch/min or mm/min)
- · Faster Machining Time
- High Metal Removal Rate (Q - in³/min or cm³/min)


Contact Your Local M.A. Ford®
Representative For More Information On The Right
Milling Strategy For Your Application.

Milling Strategy Comparison continued

Conventional

High Speed

Tool Ø 12.0mm (.4724") 4 Flute

vc - 150m/min (5,905 in/min) n - 3,975 RPM fz - 0.06mm/z (.0024 in/z) vf - 954mm/min (37.6 in/min)

ap - 2 x 12.0mm (.4724") 1xD ae - 6.0mm (.2362") 0.5xD

Metal Removal Rate (MRR) 68.7 cm³/min (4.2 in³/min)

Machining Time 7 minutes 45 Seconds

Tool Ø 12.0mm (.4724") 5 Flute

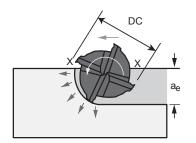
vc - 300m/min (11,811 in/min) n - 8,000 RPM fz - 0.15mm/z (.006 in/z) vf - 6,000mm/min (240 in/min)

ap - 24.0mm (.945") 2xD ae - 1.2mm (.047") 0.1xD

Metal Removal Rate (MRR) 172.8 cm³/min (10.5 in³/min)

Machining Time
3 minutes 35 Seconds

Contact Your Local M.A. Ford®
Representative For More Information On The Right
Milling Strategy For Your Application.

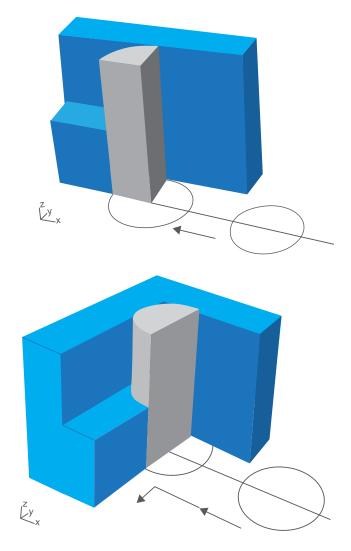

Radial Chip Thinning

During profile or side milling with a solid carbide end mill at 50% (ae) radial width of cut, the chip formed is at full programmed thickness. When your radial depth of cut decreases to something less than 50%, the chip formed is not as thick. This is known as "radial chip thinning". When less than 50% (ae) radial depths are used, it becomes necessary to increase your feed to achieve full chip thickness. This means a higher programmed feed rate is needed to achieve the recommended chip thickness.

Programmers and Machinists have a tendency to lower feed rate due to previous experience. With the utilization of new programming methods, such as trochoidal and peel milling, manufacturers can increase productivity and tool life. These methods take advantage of much deeper (ap) axial cuts with less (ae) radial width of cut. With these methods, it's possible to run higher surface footages (SFM or m/min) along with these higher feed rates (IPM or mm/min) because less heat is generated at the cutting zone. Plus, you're utilizing chip thinning.

With the introduction of M.A. Ford[®]'s variable pitch tools, harmonics have virtually been eliminated, thus easing Programmers and Machinists fears of previous experiences. Advancements in our hard coatings enable our tools to withstand 900 degrees F, thus eliminating heat concerns. In addition, machine tools have advanced greatly to take advantage of these new methods. Use the following chart as a reference to increase feed rates by multiplying recommended feed rate by the increase feed factor, according to your (ae) radial depth of cut as % of (Dc) cutter diameter.

(ae) Radial Depth of Cut as to % of (Dc) Cutter Diameter	Increase Feed Factor
30%	1.10
25%	1.20
20%	1.20
15%	1.41
10%	1.80
7%	2.00
5%	2.30
3%	2.93
2%	3.60
1%	5.00



Tool Engagement Angle

Sometimes referred to as "Arc of Engagement", this is the degrees of engagement the end mill will contact the part during cut depths in the radial direction. Ideally you would like to engage the end mill at a constant engagement angle of 30-40 degrees. At this degree of engagement the tool will perform best because of acceptable loading while not exceeding deflection limits.

As the tool travels around the geometrical shape of the part features, it will encounter areas where it could exceed the acceptable engagement angle. Software manufacturers have created methods to calculate algorithms to avoid these situations. One such case would be the entry into a pocket corner. At 50% radial depth of cut (ae), the cutter runs along the pocket side with a tool engagement angle of 90 degrees. As it enters the corner, it can quickly jump to 180 degrees as shown in the example below.

At this intersection, large engagement would cause tool chatter and even breakage. Using CAD CAM software to generate the corner avoids an abrupt stop and change of direction. It also keeps a constant arc of engagement while providing smooth chatter free cutting and long tool life.

Deflection

During the machining process, high cutting forces are directed on the end mill causing it to deflect. How much the end mill deflects depends on cutting parameters, tool diameter, tool stick out, and the elasticity coefficient (PSI) of the cutting tool material. The cutting tool strength will vary from different suppliers. At M.A. Ford[®], we use only raw material of the highest quality and strength.

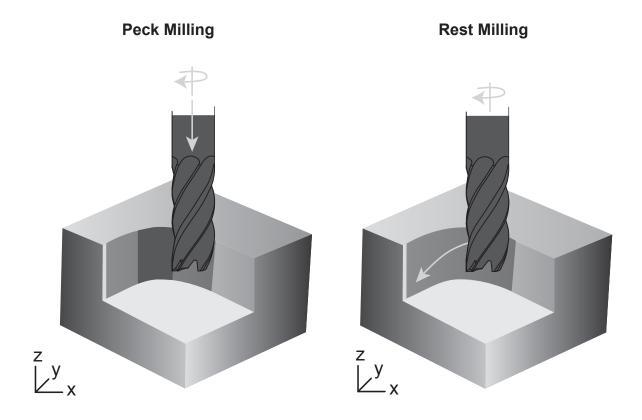
During roughing, deflection can be slightly higher than finishing. Deflection may be tolerable when roughing because at some point you will come back and finish cut your part. On larger carbide tools, deflection less than .001" (.025mm) is acceptable. However, on small micro end mills, deflection of less than .0005" (.0127mm) is acceptable.

Depending whether you are conventional milling or climb milling, deflection will be in different directions. With climb milling, deflection is in the direct opposite of the cut, but with conventional milling its direction is more parallel with the cut. This difference in direction will impart a different pattern finish on the wall of the workpiece. In climb milling, the tool engagement lines are more vertical and distinct. With conventional milling, your chip starts out thin and then gets thicker as your end mill continues through the cut; tool engagement lines are not as distinctly vertical.

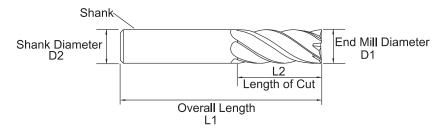
M.A. Ford® has designed computer software to perform the many calculations required to determine tool deflection. All M.A. Ford® tools carry a Lot Number which can be traced back to that tool's DNA. With this information, we can plug the exact carbide TRS number into our software. How does this benefit you? We can increase cutting parameters to the point of maximum deflection, thus optimizing your operation parameters.

Please contact M.A. Ford®'s Tech Line (1-800-553-8024 or maftech@maford.com) with your tooling application questions.

ISO 9001:2015 Certified

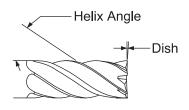

Pocket Corners

Inside or pocket corners present a different challenge in two ways. First, if the corner radius is proportionally smaller than the related pocket size, it is necessary to use a much smaller diameter end mill to achieve the necessary radius. With a small diameter end mill there are restrictions from a cut depth standpoint; a small end mill will deflect when axial depth of cut (ap) exceeds the end mills limits and breakage can occur.

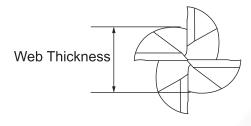

Secondly, to rough the pocket the programmer may use a much larger end mill to remove large amounts of stock. If you plow into the rough corner with the small end mill, your tool engagement angle can cause the small end mill to deflect and chip or break. To avoid these problems, you must use one of two methods: peck milling or rest milling. Software packages again ease this procedure by maintaining low tool engagement angle.

Peck milling is a series of axial plunge moves to remove much of the stock remaining in the corner. Plunging directs forces axially on the machine spindle, thus eliminating radial force and deflection. This is particularly beneficial for light duty machines.

Rest milling is a series of circular moves while traveling in the Z direction, very similar to helical milling. This removes the remaining stock much like trochoidal milling but with the addition of Z movements.

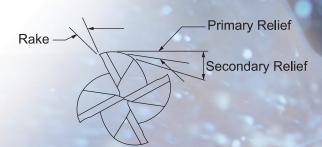


End Mill Terminology



Length of Cut (Flute Length) – Always select the shortest Flute Length possible for your application. By selecting the shortest Flute Length, you can increase rigidity and allow for higher feed rates.

End Mill Diameter – Always select the largest diameter possible for your milling operation. Increasing your diameter by just 10%, can increase your rigidity by 25%.



Helix Angle – Varies from 0 to 60 degrees. Higher helix angles can increase the number of teeth in a cut, and help in redirecting cutting forces. This is beneficial in harder to machine materials in particular. Changes in helix angle can also greatly affect the flute form of an end mill, and affect chip evacuation.

Web Thickness – The cross section of the fluting of the end mill. Larger webs allow for more rigidity, while smaller webs allow for better chip evacuation. This feature is highly dependent on the material being machined.

Rake Angle – The measurement of the curvature of the cutting edge in the face of the flute. A high rake angle will cut more aggressively, while a lower rake angle will increase the strength of the cutting edge.

Primary Relief – The clearance directly behind the cutting edge. High primary relief angles will allow for more aggressive milling, while lower relief angles will increase the strength of the cutting edge. The primary relief will also affect the wear on a cutting edge. Lower primary relief angles can tend to develop larger wear lands.